
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 1701–1721

www.elsevier.com/locate/jcp
Enriched multi-point flux approximation for general grids

Qian-Yong Chen a,*,1, Jing Wan b, Yahan Yang b, Rick T. Mifflin b

a Institute for Mathematics and its Applications, University of Minnesota, 207 Church Street S.E., Minneapolis, 55455-0134, United States
b ExxonMobil Upstream Research Company, Houston, TX, United States

Received 26 October 2006; received in revised form 13 September 2007; accepted 25 September 2007
Available online 6 October 2007
Abstract

It is well known that the two-point flux approximation, a numerical scheme used in most commercial reservoir simu-
lators, has O(1) error when grids are not K-orthogonal. In the last decade, the multi-point flux approximations have been
developed as a remedy. However, non-physical oscillations can appear when the anisotropy is really strong. We found out
the oscillations are closely related to the poor approximation of pressure gradient in the flux computation.

In this paper, we propose the control volume enriched multi-point flux approximation (EMPFA) for general diffusion
problems on polygonal and polyhedral meshes. Non-physical oscillations are not observed for realistic and strongly aniso-
tropic heterogeneous material properties described by a full tensor. Exact linear solutions are recovered for grids with non-
planar interfaces, and a first and second order convergence are achieved for the flux and scalar unknowns, respectively.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many physical processes, for example, the Darcy flow in porous media and the heat transfer in Basin mod-
eling, can be modeled by a diffusion equation in the form
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The diffusion coefficient K is often a space dependent full tensor because of the strongly anisotropic and inho-
mogeneous media, which imposes a great challenge for numerical schemes, especially when the principal direc-
tions of K are not aligned with the grids. This is usually the case for unstructured meshes. In the following, we
will state everything in the context of reservoir simulation, simply because the initial motive is to develop a
more robust discretization for simulating multi-phase flows in porous media, although the proposed scheme
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can apply to general diffusion problems described by Eq. (1). In this paper, we assume K is a piecewise con-
stant tensor. The scalar unknown p will be called pressure for convenience.

There has been extensive research on developing numerical schemes for Eq. (1) on general grids. Some
highly desirable properties of the discretization beyond the classical stability and accuracy, include local mass
conservation, harmonic average transmissibilities, discrete maximum principle, and cost-efficiency. For his-
toric reasons, the two-point flux approximation (TPFA), a scheme that is inconsistent when the grids are
not K-orthogonal, is still used in most commercial reservoir simulators. Roughly speaking, K-orthogonality
means that the flux �K$p Æ n can be approximated by a factor of the pressure difference from two neighbour-
ing control volumes (see (8) for one example). Unfortunately, K-orthogonality is often lost in the grids that
honor the geologic features such as the sloping faults and channels, and other important features such as
nearly horizontal wells [18]. Recently, Wu and Parashkevov studied the effect of non-orthogonality error of
deviated grids on the flow solutions from the two-point flux, control volume method [35]. They concluded that
for most practical cases the errors in horizontal flow are relatively small and the errors in vertical flow can be
rather significant.

To obtain a consistent scheme, different groups of researchers have independently developed the so-called
control volume multi-point flux approximation (MPFA), such as Aavatsmark et al [3], Edwards and Rogers
[15], Verma and Aziz [34]. Since their pioneer work, a whole class multi-point flux methods have been devel-
oped [2,19,26]. In Ref. [22], the authors implement the multi-point flux methods on a hexahedral grid. More
recently, Klausen and Russell [19] compare the multi-point flux approximation with several other locally con-
servative schemes which handle discontinuous coefficients, such as the classical mixed finite element method
and the support operators method (also called mimetic finite difference method). Klausen and Winther also
proved the convergence of the multi-point flux approximations on smooth quadrilateral grids [20].

In most cases, good results are obtained by the multi-point flux methods, but non-physical oscillations can
appear for strongly anisotropic fields because of non-monotonicity of the matrix (see, e.g. [24,27]). This means
that the numerical solution does not satisfy the maximum principle, although the analytical solution does. In
order to improve the monotonicity property, Nordbotten and Eigestad recently developed a MPFA Z-method
for quadrilateral grids by choosing a different stencil when computing the flux [29]. But it is not clear how to
extend their method to unstructured polyhedral meshes. Some other very recent research on this issue includes
[23,28,17,4].

The mimetic finite difference schemes proposed by Shashkov et al. [33] are very promising in terms of deal-
ing with highly distorted grids and heterogeneous media. The convergence and super convergence [6,7] are also
established for smooth problems on smooth meshes by rewriting the scheme into the form of mixed finite ele-
ment methods. (A more general proof was provided in Ref. [8].) Furthermore, in Ref. [9], Brezzi et al. employ
an innovative technique to generalize it to a family of schemes with parameters which might be tuned to
achieve the discrete maximum principle. But by now such a scheme still does not exist, and the computational
cost of the mimetic finite difference schemes is an issue too.

There is also considerable advance in mixed finite element type methods for distorted general meshes
[10,12], but they are quite expensive and the 3-D case is still under development [25,21]. A worthy alternative,
the control volume finite element (CVFE) methods (often called finite volume element methods) [5,11,32], are
locally mass conservative and applicable on flexible grids, but they do not handle discontinuous diffusion coef-
ficients well [14].

In this paper, we develop a new multi-point flux approximation method, called enriched multi-point flux
approximation (EMPFA), based on more consistent pressure approximations in the interaction region. The
proposed method does not produce oscillatory solutions and works for general matching or non-matching
polygonal and polyhedral meshes, including meshes with non-planar interfaces. Expected convergence rate
is also achieved for the new method, Moreover, the enriched multi-point flux approximation is equivalent
to the two-point flux approximation for the K-orthogonal grids.

The remaining of the paper is organized as follows. In Section 2, we restate the original multi-point flux
approximation on quadrilateral grids. Section 3 describes our new multi-point flux approximation for two-
dimensional grids, shows its numerical convergence, and compares the numerical results with the multi-point
flux approximation method. In Section 4, we extend the technique in Section 3 to polyhedral meshes. Finally,
we summarize the paper and make some concluding remarks in Section 5.
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2. Multi-point flux approximation

In this section, we first briefly review the multi-point flux method with surface mid-points as continuity
points (called O-method [2]) on quadrilateral grids. The extension to unstructured grids is trivial. Then we ana-
lyze the limitations of the MPFA-O method.

2.1. Description of multi-point flux approximation

Let X 2 R2 be the computational domain, and divide it into non-overlapping quadrilateral control volumes
X = [Vi. Consider Eq. (1) with piecewise constant permeability K (i.e. constant on each Vi). In the control
volume multi-point flux approximation methods, the mass is conserved on each control volume, i.e. integrate
the equation on control volumes {Vi} to obtain
�
Z

oV i

Krp � ndS ¼
Z

V i

f dV ; 8V i; ð2Þ
where the left hand side is the amount of flux (i.e. �K$ p Æ n) across the boundary of Vi.
In the MPFA method, there is only one degree-of-freedom (usually pressure at the mass center) for each

control volume. The fluxes across control volume interfaces are computed for each interaction region and
expressed in terms of those degrees-of-freedom. When computing the fluxes, each interface (a line segment)
is divided into two parts, on which the fluxes are first computed separately and then summed up to be the flux
across the whole interface. For example, Fig. 1 shows four control volumes with centers Ci’s which meet at
point O. The polygon area formed by the cell centers Ci’s and the edge middle points Mi’s is called interaction

region. The small quadrilateral of each control volume included in the interaction region is called sub-volume,
e.g. M1OM4C1. (Note that each vertex of the mesh corresponds to an interaction region.) In this interaction
region, only the fluxes across half edges OMi’s will be computed. Then we loop over all the interaction regions
to compute the fluxes for all the control volume boundaries/interfaces.

In order to compute the fluxes across OMi’s (i.e. the integral of �K$p Æ n on OMi), the values of p at Mi’s
are introduced as four temporary unknowns. The method with this choice is called the MPFA-O method.
(One could also use the values of p at other points as the temporary unknowns.) Recall that the primary
unknowns are the values of p at Ci’s. With both primary and temporary unknowns, we can compute $p

and then the fluxes by assuming p is a linear function on the shaded triangles in Fig. 1. For example, when
computing the flux across OM1 and OM4 from volume C1, a constant gradient $ p is computed from the linear
function on DM1M4C1

, and then extrapolated to be the gradient on the whole quadrilateral sub-volume
M1OM4C1. Hence the flux across OM1 and OM4 can be written into the form of aTK1$p with the area vector
a = jOM1jn1 and �jOM4jn4 respectively, where K1 is the diffusion tensor on volume C1.
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Fig. 1. Multi-point flux method: interaction region.
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Denote P ¼ ðpC1
; pC2

; pC3
; pC4
ÞT and P ¼ ðpM1

; pM2
; pM3

; pM4
ÞT, where pA represents the value of p at point A.

Rewrite the fluxes across half edges OMi’s from volume Ci’s into a matrix vector product form as APþ BP,
and the fluxes from the opposite volumes as CPþDP. The formula for matrices A, B, C, D can be found in
[2]. Balancing the fluxes across OMi’s from both sides yields
APþ BP ¼ CPþDP:
From the above equation, P can be solved in terms of P, and then substituted back to the flux expression. In
the end, the fluxes across the half edges can be written as
TP ¼ ½AðA� CÞ�1ðD� BÞ þ B�P;

where the matrix T is called the transmissibility matrix in petroleum industry.

Note that the MPFA-O method also applies to both matching and non-matching unstructured polygon
grids as shown in Fig. 2, although the above description is only for quadrilateral meshes.

2.2. Limitations of MPFA-O method

In most cases, good results are obtained from the multi-point flux methods. However, non-physical oscil-
lations can appear when the anisotropy of permeability field is strong (see Section 3.4 or Refs. [24,27]). Most
researchers agree that the oscillations are due to the non-monotonicity of the matrix. In the following, we do a
non-rigorous analysis from the aspect of accuracy, which leads to the development of our new multi-point flux
method in the next section.

Consider an interaction region of rectangular control volumes as shown in Fig. 3. As described in the pre-
vious section, a linear pressure is assumed on DM1M4C1

in the multi-point flux approximation method. It yields a
constant pressure gradient as
u ¼ pC1
�pM1

Dx ;

v ¼ pC1
�pM4

Dy ;

(

in which Dx and Dy are the grid size in the x- and y-direction. This pressure gradient is then extrapolated to the
whole quadrilateral M1OM4C1 and used to compute the fluxes across edges OM1 and OM4 from control vol-
ume C1. From the Taylor expansion at point M1, one can have
op
oy

����
M1

¼ vþ Dx
o

2p
oxoy

����
M1

þ OðDy þ ðDxÞ2Þ: ð3Þ
Clearly, v will be a poor approximation of op
oy at point M1 if o2p

oxoy � 1
Dx in the neighbourhood of M1. Similar result

holds for u being an approximation of op
ox at point M4. We believe that these poor approximations of fluxes due

to the built-in extrapolation in the MPFA method contribute to the non-physical oscillations. If the grid is fine
enough in the sense of Dx o2p

oxoy being small near point M1, the oscillation should be less severe. It is confirmed by
the first example in Section 3.4.
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Fig. 2. General two-dimensional grids.
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Fig. 3. An interaction region of rectangular control volumes.
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Note that these poor approximations do NOT come into the formulation of fluxes when the grid is
K-orthogonal. It explains why no oscillation was observed for K-orthogonal grids.

3. Enriched multi-point flux approximation on polygon meshes

In this section, we present a new multi-point flux approximation, called enriched multi-point flux approx-
imation. It works for general polygon meshes like the multi-point flux approximation. All the descriptions and
explanations are only for quadrilateral control volumes, with straightforward extension to unstructured grids.
All the notations will be the same as those in Section 2 if not specified otherwise.

3.1. Description

The enriched multi-point flux approximation method follows the same framework as the MPFA-O method:
introducing some temporary unknowns in the beginning in order to compute the gradient of p, and then elim-
inating them by balancing fluxes. But in the EMPFA method we include one more temporary unknown, p at
the ’center’ of interaction region, to avoid the extrapolation procedure in the MPFA method which has been
previously shown to contribute to the non-physical oscillations.

We propose two different approximations for the scalar unknown p. As shown in the left of Fig. 4, the first
approximation is a piecewise linear function which is linear on each triangle (e.g. M1OC1). Note that only the
interaction region is drawn. The second option is to approximate p with a piecewise bilinear function on each
quadrilateral in the right of Fig. 4. The bilinear interpolation is included in Appendix A for completeness.
With either approximation for p, we compute the fluxes across edges OMi’s and balance them to get a system
of four equations written as
APþ BPþ pO �~l ¼ CPþDPþ pO �~r: ð4Þ

Note that matrices A, B, C, D may have different entries from those in Section 2. For simplicity, the explicit
formula for vectors~l and~r are not given. The new temporary unknown pO, the value of p at point O, comes
into the formulation of fluxes as a result of approximating p in a richer space (compared to the multi-point flux
approximation). When the bilinear approximation is chosen, the gradient of p is not a constant on the half
edges OMi’s except for some special grids. In this case, a single point quadrature (e.g. Mi) can be used to com-
pute the integral of fluxes on the half edges.

In order to eliminate all the five temporary unknowns, one more equation besides Eq. (4) is needed. We
propose two different ways to obtain the extra equation.
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Fig. 4. EMPFA interaction region. Left: piecewise linear approximation. Right: piecewise bilinear approximation.
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The first approach is to solve Eq. (1) on a small volume surrounding the interaction region center. We only
describe this approach with bilinear approximations of pressure p. The procedure is similar for the piecewise
linear approximation. In Fig. 5, X� = D1D2D3D4 with jODij = �jOMij is the small volume on which Eq. (1) will
be solved, where � is a small positive number. So
�
Z

oX�

Krp � ndS ¼
Z

X�

f dV ; ð5Þ
where oX� = D1D2 [ D2D3 [ D3D4 [ D4D1. Note that we only show the small volume for the case with piece-
wise bilinear pressures.

Consider the edge D4D1. After obtaining the bilinear transformation coefficients for the quadrilateral
M1OM4C1 as described in Appendix A, the flux across edge D4D1 can be computed as
�� � 1

a2b3 � a3b2

b3 � b2 a2 � a3ð ÞK1

b3 �b2

�a3 a2

� � �1 1 0 0

�1 0 0 1

� � pM1

pO

pM4

pC1

0
BBB@

1
CCCAþOð�2Þ: ð6Þ
In the same way, we compute the flux across other edges of oX�. Therefore, the left hand side of Eq. (5) is equal
to
�gðpO;P;PÞ þOð�2Þ; ð7Þ

with the explicit expression of g being computed from the sum of Eq. (6) for all X� edges.
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Fig. 5. EMPFA interaction region: a small volume.
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Now we consider the right hand side of Eq. (5). Assume f is a square integrable function on a volume
~X � X� for some � > 0, i.e.
Z

~X
jf j2dV

� �1=2

<1:
By the dominated convergence theorem [31], we have
Z
X�

jf j2dV
� �1=2

! 0 as �! 0:
Rewrite it into the standard asymptotic notation
Z
X�

jf j2dV
� �1=2

¼ oð�0Þ:
According to the Schwarz inequality, we have
Z
X�

f dV

����
���� 6

Z
X�

jf j2dV
� �1=2

�
Z

X�

1dV
� �1=2

¼ oð�Þ:
Combining the above equation with Eq. (7), one can have
�gðpO;P;PÞ þOð�2Þ ¼ oð�Þ:

Let �! 0 to obtain the final equation
gðpO;P;PÞ ¼ 0;
from which we can solve pO in terms of P and P. Then we can compute the fluxes by solving P in terms of P in
the same way as in the multi-point flux approximation.

Remark 1. The resultant equation is in some sense independent of the shape of X� because of the limiting
process. One may be able to eliminate pO without letting �! 0. But the formulation will not be as neat as the
one we get here.

Remark 2. Although we state our algorithm for an interaction region with four sub-volumes, it works for any
interaction region from general two-dimensional grids.

The second approach is to solve the original equation (i.e. Eq. (1)) on the whole interaction region with the
standard Finite Element Method (FEM). The mesh can be either one shown in Fig. 4, depending on which
approximation is used for p. Dirichlet boundary conditions are imposed, and a linear p is interpolated from
its values at two ending points for each boundary line segment connecting Ci’s and Mi’s. From this FEM
solve, the extra unknown pO can be expressed as a linear function of P and P, which is then inserted into
Eq. (4) to eliminate all the other temporary unknowns. After the elimination, the fluxes will be functions of
the primary unknowns only, like those in the multi-point flux approximation methods.

One can combine the linear or bilinear approximation with either approach to obtain the extra equation.
Almost equivalent numerical results were obtained for the two different approximations.

Note that the enriched multi-point approximation method works for both matching and non-matching
unstructured polygon grids. In the following, we show how to make our algorithm work for non-matching
grids.

3.2. Non-matching grids

When a linear pressure is assumed, the enriched multi-point flux approximation automatically works for
non-matching grids. Only for the bilinear pressure interpolation we need to make a minor change of the above
algorithm. Consider a typical interaction region with a non-matching grid point as shown in Fig. 6. Since
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C1M1OM3 is a degenerated quadrilateral, the point O will be a singularity point if we still use the bilinear
transformation to map it to a standard square element. So instead of treating C1M1OM3 as one sub-volume,
we decompose it into two triangles: DC1M1O and DC1OM3, on each of which a linear interpolation is applied.
Then following the procedure described in the previous sections, we can compute the flux across all the edges
in the interaction region. The small volume used to generate the extra equation to eliminate pO is shown on the
right part of Fig. 6.

3.3. Equivalence of EMPFA and TPFA for K-orthogonal grids

Here we show that the enriched multi-point flux approximation is equivalent to the conventional two-point
flux approximation for K-orthogonal grids.

Consider the flux across edge M1O from volume C1 in Fig. 5. Note that the point M1 has coordinate (0, 0)
in n–g coordinate system (see Appendix A). Using the formula given in Appendix A, the pressure gradient at
point M1 is
1

a2b3 � a3b2

b3 �b2

�a3 a2

� � �1 1 0 0

�1 0 0 1

� � pM1

pO

pM4

pC1

0
BBB@

1
CCCA:
Since the grid is K-orthogonal, there exists a constant c such that
aTK ¼ c C1M1

!
¼ c �a3 �b3ð Þ: ð8Þ
Plug the above two equations into the flux formula aTK $p to obtain
aTKrp ¼ cðpM1
� pC1

Þ;
which is exactly the same formula as that from the two-point flux approximation. Therefore, we have showed
that the enriched multi-point flux approximation is equivalent to the conventional two-point flux approxima-
tion for K-orthogonal grids.

3.4. Numerical experiments

In this section, we solve Eq. (1) for various permeabilities and solutions with different regularities.
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3.4.1. Non-physical oscillations

The problem described in Ref. [24] is to solve Eq. (1) with permeability
Fig. 7.
pressu

Fig.
K ¼
cos h sin h

� sin h cos h

� �
k1 0

0 k2

� �
cos h � sin h

sin h cos h

� �
: ð9Þ
The computation domain is [�0.5, 0.5] · [�0.5, 0.5] with a well sitting in the middle. Constant pressure is used
as boundary conditions. A constant flow rate is specified in the code for the control volume including the well.
As shown in Figs. 7 and 8, non-physical oscillations are present when k2/k1 is large and the grid is not K-
orthogonal. Fig. 9 shows the solution from the multi-point flux approximation on finer quadrilateral grids.
Clearly the oscillation becomes less severe when refining the grid.

Figs. 10 and 11 display the solution from the enriched multi-point flux approximation. No oscillation is
observed. For comparison purposes, we also show the pressure profile from the two-point flux approximation.
The anisotropic structure of the pressure profile is clearly distorted by the two-point flux approximation.
Oscillatory solution from MPFA on quadrilateral control volumes. k1 = 1, k2 = 1000, h = p/3. Left: grid of size 15 · 15. Right:
re profile.

8. Oscillatory solution from MPFA on triangular control volumes. k1 = 1, k2 = 25, h = p/3. Left: grid. Right: pressure profile.



Fig. 9. Less oscillatory solution from MPFA on finer quadrilateral grids. k1 = 1, k2 = 1000, h = p/3. Left: 33 · 33. Right: 99 · 99.

Fig. 10. Pressure profile on the quadrilateral grid. Left: EMPFA. Right: TPFA. k1 = 1, k2 = 1000, h = p/3. Grid: 15 · 15.

Fig. 11. Pressure profile on the triangular grid. Left: EMPFA. Right: TPFA. k1 = 1, k2 = 25, h = p/3.

1710 Q.-Y. Chen et al. / Journal of Computational Physics 227 (2008) 1701–1721
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In order to have a quantitative comparison between the EMPFA and MPFA methods, we consider a case

similar to the above problem. Assume the analytical solution is p(x, y) = �q log(r) + c, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q
with
n

g

� �
¼

1ffiffiffi
k1

p

1ffiffiffi
k2

p

0
@

1
A cos h � sin h

sin h cos h

� �
x

y

� �
:

The constants q and c are chosen such that p P 0 on the computational domain [�0.5, 0.5] · [�0.5, 0.5]. The
permeability tensor is assumed to have the form as given in Eq. (9). Exact solution is applied as Dirichlet
boundary conditions. From the result shown in Fig. 12, the enriched multi-point flux method is more accurate
than the original multi-point flux method for this test case.

3.4.2. Uniform flow

The analytical solution is a uniform flow on [�0.5, 0.5] · [�0.5, 0.5]. Specially, we choose
pðx; yÞ ¼ xþ 4; and pðx; yÞ ¼ y þ 2:
The permeability is assumed to be a diagonal tensor, K = diag(10,1). The computation is done on a pseudo-
random grid in Fig. 13. The grid is generated by first building a uniform Cartesian grid and then perturbing it
in a certain way such that all the control volumes are still convex quadrilaterals. More details on construction
of this type of random grids can be found in [33]. As expected, the exact solution is recovered up to the ma-
chine accuracy by the enriched multi-point flux method.

3.4.3. Convergence study
We now study the convergence rate of the enriched multi-point flux approximation. The discrete L2 error of

pressure and normal velocities take the form
ep ¼
P

i
jV ijðpex;i � piÞ

2

� �1=2

;

ef ¼
P
e2E

Qe
fex;e�fe

jej

� �2
�P

e2E
Qe

� �1=2

;

8>>><
>>>:
where {Vi} is the set of all the control volumes and E is the set of all the control volume edges. jVij denotes the
volume (area for 2-D problems) of control volume Vi, while Qe is the volume associated with edge e. In this
Fig. 12. Flux error. Left: MPFA. Right: EMPFA. k1 = 1, k2 = 1000, h = p/3. Quadrilateral grid of size 11 · 11.



Fig. 13. Random grid.
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paper, Qe is simply the total area of the sub-volumes that share the edge e. The same discrete error measure has
been used in Refs. [19,16].

Example 1. The analytical solution p(x,y) = cos(px)cos(py) + 2 and K = diag(10, 1). The computation is done
on the random grid as shown in Fig. 13. During the grid refinement, we first refine the Cartesian mesh
uniformly and then perturb the mesh to obtain a finer random grid. As shown in Table 1, the expected
convergence rate is achieved for the enriched multi-point flux method.

Example 2. Consider a case with discontinuous permeability field. Fig. 14 shows the domain including four
sub-domains each of which is assumed to have homogeneous isotropic permeability field, i.e. Ki = kiI. The
four sub-domains meet at the center (origin (0,0)) with angle /. We seek an analytical solution with form
Fig. 14

Table
Conve

N

8
16
32
64

p(x, y)
pðx; yÞ ¼ pðr; hÞ ¼ raðai sinðahÞ þ bi cosðahÞÞ; if ðx; yÞ 2 ith sub-domain; i ¼ 1; . . . ; 4;
k2
k1

k3
k4

φ

. Discontinuous permeability field. Left: the computation domain. Right: 8 · 8 mesh which honors discontinuity of permeability.

1
rgence rate

EMPFA MPFA

ep Rate ef Rate ep Rate ef Rate

0.01593 1.4039 0.01892 1.7415
0.00344 2.21 0.6198 1.18 0.00369 2.36 0.7691 1.18
0.00082 2.06 0.2702 1.20 0.00100 1.88 0.3851 1.00
0.00023 1.81 0.1195 1.18 0.00029 1.78 0.1835 1.07

= cos(px)cos(py) + 2 and K = diag(10, 1).



Table 2
Convergence rate

N EMPFA MPFA

ep Rate ef Rate ep Rate ef Rate

8 0.2688 6.5372 0.3360 4.9486
16 0.1044 1.36 4.1590 0.65 0.1255 1.42 3.1238 0.66
32 0.0393 1.41 2.5827 0.69 0.0454 1.47 1.9380 0.69
64 0.0145 1.44 1.5803 0.71 0.0162 1.49 1.1877 0.71

Permeability Ki = kiI with k1 = 100, k2 = 1, k3 = 1, k4 = 1. / = 2p/3.
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in the polar coordinate system. The coefficients ai’s , bi’s and a can be computed from the continuity conditions
of pressure p and flux K$p Æ n across the interfaces of sub-domains. When k1 = 100, k2 = 1, k3 = 1, k4 = 1, /
= 2p/3, we have a solution with
a ¼ 0:7547;

a1 ¼ 1:00995; ai ¼ 1:99990; i ¼ 2; 3; 4;

b1 ¼ 1; bi ¼ 100:98019; i ¼ 2; 3; 4:
Table 2 lists convergence rates from the enriched multi-point flux method and the multi-point flux method.
The order of the L2 error of pressure is almost h2a, which is the optimal rate for conforming finite element
methods. (The order h2a is obtained in Ref. [30] with the discontinuous Galerkin method.) We also did the
test cases with / = p/2, k1 = k3 = 1, k2 = k4 = 5, 10, 100 as Eigestad and Klausen did in Ref. [16]. Similar re-
sults were obtained for the enriched multi-point flux approximation.
3.4.4. Discussion

Thorough numerical tests have been done to verify the accuracy of the enriched multi-point flux approx-
imation method. In the above numerical experiments, almost equivalent results have been obtained for both
Dirichlet and Neumann boundary conditions, and for any combination of linear/bilinear pressure approxima-
tion and either way to get the extra equation (cf Section 3.1). Figs. 15 and 16 list a few other meshes we have
tried, some of which are actually exported from the gridding software currently used in ExxonMobil Upstream
Research Company. For all the meshes, the exact linear solution can be recovered, and expected convergence
is achieved for both the pressures and normal velocities.

We have also done extensive tests on the robustness of the new method. No oscillations were observed in all
the numerical solutions when strongly anisotropic K exists, except for one case a spike appears in the interior
domain. In this particular case, the material property (permeability field) is taken from an XZ cross-section of
SPE10 [1]. Then we rotate the two-dimensional permeability for 60 degrees in the counterclockwise direction,
and use the rotated permeability as K in the numerical experiment. However, the numerical permeability field
is not considered to be realistic or physical because the correlation is completely lost after the artificial rota-
tion. Not surprisingly, the control volume finite element method performs much better in this case because it is
essentially a finite element method which usually does not have problem with oscillations.
Fig. 15. Two-dimensional meshes I.



Fig. 16. Two-dimensional meshes II.
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4. Enriched multi-point flux approximation for polyhedral meshes

In this section, we extend the enriched multi-point flux approximation method to three-dimensional grids.
For simplicity, we only describe the extension with the combination of piecewise linear approximation of pres-
sure and the FEM way of obtaining the extra equation to eliminate the temporary unknown which is located
at the ‘center’ of the interaction region.

4.1. Local mesh

From the description in Section 3.1, the interaction region in 2-D, more precisely every sub-volume, has to
be divided into triangles (see Fig. 4) in order to define a piecewise linear approximation for p. Recall that every
sub-volume is the portion of one control volume that lies inside the interaction region. For two-dimensional
grids, each sub-volume is always a quadrilateral except for the non-matching grids (see e.g. Fig. 6). For
unstructured polyhedral grids, the sub-volumes are much more complex, and so are the interaction regions.
We first need to divide the interaction regions of three-dimensional meshes into tetrahedrons in order to define
a piecewise linear approximation for the scalar unknown p.

Since each sub-volume will be partitioned into tetrahedrons separately, we only explain how to divide one
sub-volume. Figs. 17 and 18 demonstrate the whole process of constructing the sub-volume and local mesh for
one particular control volume. Suppose point A is the ’center’ of the interaction region, i.e. where the control
volumes meet. The sub-volume for this control volume is the polyhedron formed by point A, the volume cen-
ter C, and the centers of the control volume faces and edges which meet at point A. In the graph, the face
centers (e.g. B) and edge centers (e.g. D and E) are the dark dots and star-shaped points respectively. Note
that the control volume faces could be non-flat. In the implementation, we simply use the average of face ver-
tices as the face center for each face.

Half of the sub-volume faces (e.g. ADBE) will be shared with another sub-volume. So when dividing the
sub-volume, we have to make sure the partitions of the shared faces are consistent from both sides. This is
achieved by a two-step partition strategy. The first step is to divide the sub-volume into pyramids by connect-



A
A

C
B

D

E

Fig. 17. Polyhedral mesh. Left: a control volume. Right: the corresponding sub-volume.
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Fig. 18. Polyhedral mesh: construction of local mesh.
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ing C with all the edge centers. One such pyramid is shown in the middle part of Fig. 18. The total number of
pyramids is equal to the total number control volume faces sharing point A. The second step is to partition
each pyramid into two tetrahedrons by connecting point A to one previously computed face center which lies
on the bottom of the pyramid (point B in Fig. 18). The resultant two tetrahedrons, CABE and CABD, are
shown in the right graph of Fig. 18. After the above procedure, each interaction region is divided into several
non-overlapping tetrahedrons, on which a piecewise pressure can be defined.

4.2. Computation of flux

Using a piecewise linear approximation for p on the local tetrahedron mesh constructed in the last section,
we can compute $p and the flux across the interfaces. Clearly the flux formulation will involve the values of p
at point A, C, the face and edge centers, among which we only want to keep in our final numerical scheme the
primary unknowns, the values of p at the volume centers. Again, like the algorithm for polygon meshes, we
can eliminate face center unknowns by balancing fluxes, and remove pA by using the Finite Element Method to
solve the original equation on each individual interaction region. So the only unknowns needing extra work
are those located at the control volume edge centers. Bear in mind these unknowns cannot be eliminated
through the above local FEM solve because the edge centers are on the boundaries of the corresponding inter-
action region.

We propose to use both least square and averaging to directly approximate the edge center unknowns by
linear functions of volume and face center unknowns. First, we employ a least square method in each sub-vol-
ume to obtain a linear p from its values at the volume and face centers. The reason of choosing the least square
method is because a three-dimensional linear function has only four coefficients, but in general there may be
more than three faces of a control volume meeting at a single point. However, for the sub-volume given in
Fig. 18, the least square fitting simply becomes a linear interpolation procedure as there are only three face
centers involved (i.e. only three faces of the control volume meet at point A).

With the linear function computed as above for each sub-volume, p at every edge center will have multiple
values as each edge center point belongs to more than one sub-volume. We simply use the average of those
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values as the final value of p at the edge center. After the averaging, the value of p at any edge center is
expressed as a linear function of the values of p at the volume centers and the face centers of all the sub-vol-
umes in the local interaction region.

Combining the above, we propose the enriched multi-point approximation methods as follows.

Algorithm 1 (EMPFA).

1. For each vertex of the mesh, construct the interaction region and local mesh as described in Section 4.1.
2. Employ a piecewise linear approximation of p on the mesh built in the first step. Use this approximation to

compute the fluxes on each interface from the control volumes on both sides.
3. Solve the original equation with the Finite Element Method on the interaction region for pressure at the

‘center’ of the interaction region.
4. In each sub-volume, apply the least square method to find a linear function of p from its values at the vol-

ume center and face centers.
5. Express the value of p at every edge center in terms of p at all the volume centers and face centers, by aver-

aging the obtained linear functions in all the sub-volumes that contain this edge center point.
6. Use the formula obtained in Steps 2 and 5 to eliminate the pressures at the edge centers and interaction

region center from the flux formulation.
7. Eliminate the face center pressures by balancing the fluxes from both sides on each interface. It leads to a

flux formulation in terms of the control volume center pressures only.
8. Apply the finite volume method to solve the original equation with the fluxes computed in Step 7. It gives a

linear algebraic equation which then can be solved by standard solvers.
4.3. Numerical results

In this section, we solve Eq. (1) with the EMPFA method described in the last section. In particular, we
consider two grids given in Fig. 19. These two are actually two-and-a-half dimensional grids in the sense that
they are built by first constructing a two-dimensional grid on XY-plane, and then projecting this areal mesh in
Z-direction to each layer. Apparently, the areal mesh for the grids in Fig. 19 are quadrilateral and polygon
mesh respectively. We also randomly perturb the grids in the vertical direction as
z ¼ zþ Dz� r � randð½�1; 1�Þ; 0 < r < 0:5;
where Dz is the grid size and rand([�1, 1]) means a uniform random number from [�1, 1]. One should note the
control volume faces can be non-planar after the random perturbation (see the left graph of Fig. 19).

We choose 2 1
2
-D grids because our algorithm is initially developed for reservoir simulations and most cur-

rent reservoir simulators use only 2 1
2
-D grids.

If not specified otherwise, we assume the domain is [�1, 1]3, and the permeability takes the form
K ¼ OT
x KOx;
Fig. 19. Two-and-a-half dimensional grids.
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where K = diag(10,10,1) and Ox is the rotation matrix around x-axis:
Table
Discre

N

2
4
8

16

Quadr
Ox ¼
1 0 0

0 cos h sin h

0 � sin h cos h

0
B@

1
CA:
Problem 1 (Linear flow). Let the solution be
p ¼ xþ y þ zþ 4:
The exact solution and flux are recovered for both meshes in Fig. 19 with random perturbation r = 0.4.

Problem 2 (Numerical convergence). Let the solution be
p ¼ cosðpxÞ cosðpyÞ cosðpzÞ:

The rotation angle is 30 degrees (i.e. h = 30�) and the perturbation parameter r = 0.3.

When refining the mesh, we first refine the mesh uniformly in all the directions, and then perturb the z-coor-
dinates, like all other random meshes. We compute the discrete L2 error of pressure and normal velocities
which take the form
ep ¼
P

i
jV ijðpex;i � piÞ

2

� �1=2

;

eu ¼
P
e2E

Qe
fex;e�fe

jej

� �2
�P

e2E
Qe

� �1=2

;

8>>><
>>>:
where {Vi} is the set of all the control volumes and E is the set of all the control volume faces. jVij denotes the
volume of control volume Vi, while Qe is the volume associated with face e. In this paper, the sum of the area
of sub-volumes sharing face e is used as Qe. The similar discrete error measures is used in Section 3.4.

We also compute the H(div)h error for the flux, defined as
ku� uhkHðdivÞ;h ¼
X
allV i

Z
oV i

ðuh � nþ Krp � nÞ2 dl

 !1=2

;

where uh denotes the numerical flux. Note that the discrete H(div)h error is actually computed in the paper by
applying certain quadrature rule to the above boundary integral. The results are listed in Table 3 and 4. For
completeness, we also give the results from the MPFA-O method in Tables 5 and 6.

Problem 3 (Horizontal well). The permeability K ¼ OT
x KOx, K = diag(1000, 1000, 1) and the rotation angle is

30 degrees. Zero pressure is imposed as boundary conditions.

For this problem, we assume the horizontal well penetrates three control volumes in the center of the com-
putational domain. No well model is involved in the implementation. We simply fix the flow rate for each well
block in the code, i.e.
3
te norms of the error

ep Rate eu Rate iu � uhiH(div) Rate

0.1351 6.2790 11.0248
0.0297 2.18 3.2825 0.94 7.7657 0.51
0.0072 2.05 1.4317 1.20 4.5238 0.78
0.0018 2.01 0.6645 1.11 2.8617 0.66

ilateral areal mesh. N: number of grid points in each direction.



Table 4
MPFA: discrete norms of the error

N ep Rate eu Rate iu � uhiH(div) Rate

2 0.1608 7.1225 12.3430
4 0.0320 2.33 3.6002 0.98 8.2885 0.57
8 0.0078 2.03 1.7936 1.01 5.4665 0.60

16 0.0019 2.02 0.8942 1.00 3.7351 0.55

Quadrilateral areal mesh.

Table 5
Discrete norms of the error

NCell ep Rate eu Rate iu � uhiH(div) Rate

18 0.0497 6.2519 12.8434
100 0.0222 1.41 4.2373 0.68 10.6348 0.33
648 0.0068 1.90 2.2228 1.04 7.3477 0.59

4624 0.0019 1.92 1.1290 1.03 5.0205 0.58

Polygonal areal mesh. NCell: total number of control volumes.

Table 6
MPFA: discrete norms of the error

NCell ep Rate eu Rate iu � uhiH(div) Rate

18 0.0683 6.9493 14.1232
100 0.0281 1.55 4.8028 0.65 11.7141 0.33
648 0.0080 2.02 2.4910 1.05 8.0036 0.61

4624 0.0022 1.95 1.2863 1.01 5.5824 0.55

Polygonal areal mesh.
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f ðx; y; zÞ ¼
c ðx; y; zÞ 2 well block;

0 otherwise;

	

where c is some constant. The pressure profile is plotted in Fig. 20. Clearly, the solution from the enriched
multi-point flux approximation method does not have the non-physical oscillations appearing in the MPFA
solution.
Fig. 20. Pressure from MPFA and EMPFA. Left: MPFA. Right: EMPFA.
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5. Summary

The control volume multi-point flux approximation produces oscillatory solutions for diffusion processes in
strongly anisotropic media. Within the setting of reservoir simulation, we showed that the oscillations are
related to the poor approximation of pressure gradient in flux computation when the second order cross par-
tial derivative of pressure is large. We then developed a new multi-point flux approximation, called enriched
multi-point flux approximation (EMPFA), for general polygonal grids including non-matching grids. It is
based on a more consistent approximation of pressure, and does not produce oscillatory solutions for strongly
anisotropic permeability field, in contrast to other existent schemes such as the multi-point flux approximation
method. The expected convergence rate is achieved.

We extended the enriched multi-point approximation method to unstructured polyhedral grids. Besides get-
ting non-oscillating solutions, the EMPFA can also recover the exact linear solution for grids with non-planar
interfaces, and compute the scalar and flux unknowns respectively with a first and second convergence on
meshes which have perturbations of order O(h).
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Appendix A. ‘Bilinear’ interpolation on quadrilaterals

Here, we review the interpolation procedure of the quadrilateral element [13]. This interpolation is not an
authentic bilinear interpolation on quadrilaterals. Instead, as shown in Fig. A-1, a quadrilateral A1A2A3A4 is
mapped to a standard reference element, [0, 1] · [0, 1] in n–g plane, by a bilinear mapping with the form
x ¼ xðn; gÞ ¼ a1 þ a2nþ a3gþ a4ng;

y ¼ yðn; gÞ ¼ b1 þ b2nþ b3gþ b4ng:

	
ðA:1Þ
The interpolated function is required to be bilinear on the reference element, i.e.
pðx; yÞ ¼ pðn; gÞ ¼ p1ð1� nÞð1� gÞ þ p2nð1� gÞ þ p3ngþ p4ð1� nÞg;

where pi ¼ pAi

; i ¼ 1; . . . ; 4, denote the values of the original function at point Ai’s. The notation is abused a bit
by using p to represent the interpolated function.

With simple computation, one can have
a1 ¼ x1;

a2 ¼ x2 � x1;

a3 ¼ x4 � x1;

a4 ¼ x1 þ x3 � ðx2 þ x4Þ;

8>>><
>>>:

b1 ¼ y1;

b2 ¼ y2 � y1;

b3 ¼ y4 � y1;

b4 ¼ y1 þ y3 � ðy2 þ y4Þ;

8>>><
>>>:
(x,y) (ξ, η)

A1 A2

A3A4

1

1

A1
A2

0

A3
A4

Fig. A-1. From a quadrilateral to a reference element.
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where (xi, yi) is the coordinates of point Ai in x–y coordinate system. The Jacobian matrix of the mapping
takes the form
J ¼
ox
on

oy
on

ox
og

oy
og

 !
¼

a2 þ a4g b2 þ b4g

a3 þ a4n b3 þ b4n

� �
:

So the gradient of the interpolated function at any point can be computed as
op
ox
op
oy

 !
¼ 1

detðJÞ
b3 þ b4n �ðb2 þ b4gÞ
�ða3 þ a4nÞ a2 þ a4g

� �
�
�ð1� gÞ 1� g g �g

�ð1� nÞ �n n 1� n

� �
�

p1

p2

p3

p4

0
BBB@

1
CCCA; ðA:2Þ
where det(J) = (a2b3 � b2a3) + n(a2b4 � b2a4) + g(a4b3 � b4a3).
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